An Analytical Framework for Local Feedforward Networks 1

نویسندگان

  • Scott Weaver
  • Leemon Baird
  • Marios Polycarpou
چکیده

Although feedforward neural networks are well suited to function approximation, in some applications networks experience problems when learning a desired function. One problem is interference which occurs when learning in one area of the input space causes unlearning in another area. Networks that are less susceptible to interference are referred to as spatially local networks. To understand these properties, a theoretical framework, consisting of a measure of interference and a measure of network localization, is developed that incorporates not only the network weights and architecture but also the learning algorithm. Using this framework to analyze sigmoidal multi-layer perceptron (MLP) networks that employ the back-prop learning algorithm, we address a familiar misconception that sigmoidal networks are inherently non-local by demonstrating that given a suuciently large number of adjustable parameters, sigmoidal MLPs can be made arbitrarily local while retaining the ability to represent any continuous function on a compact domain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new SDN-based framework for wireless local area networks

Nowadays wireless networks are becoming important in personal and public communication andgrowing very rapidly. Similarly, Software Dened Network (SDN) is an emerging approach to over-come challenges of traditional networks. In this paper, a new SDN-based framework is proposedto ne-grained control of 802.11 Wireless LANs. This work describes the benets of programmableAcc...

متن کامل

An analytical framework for local feedforward networks

Interference in neural networks occurs when learning in one area of the input space causes unlearning in another area. Networks that are less susceptible to interference are referred to as spatially local networks. To obtain a better understanding of these properties, a theoretical framework, consisting of a measure of interference and a measure of network localization, is developed. These meas...

متن کامل

A Memetic Framework for Cooperative Co-evolutionary Feedforward Neural Networks

Cooperative co-evolution has been a major approach in neuro-evolution. Memetic computing approaches employ local refinement to selected individuals in a population. The use of crossover-based local refinement has gained attention in memetic computing. This work proposes a cooperative co-evolutionary framework that utilises the strength of local refinement from memetic computing. It employs a cr...

متن کامل

Rate and Synchrony in Feedforward Networks of Coincidence Detectors: Analytical Solution

We provide an analytical recurrent solution for the firing rates and cross-correlations of feedforward networks with arbitrary connectivity, excitatory or inhibitory, in response to steady-state spiking input to all neurons in the first network layer. Connections can go between any two layers as long as no loops are produced. Mean firing rates and pairwise cross-correlations of all input neuron...

متن کامل

Local Feedforward Networks

Although feedforward neural networks are well suited to function approximation , in some applications networks experience problems when learning a desired function. One problem is interference which occurs when learning in one area of the input space causes unlearning in another area. Networks that are less susceptible to interference are referred to as spatially local networks. To understand t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996